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Abstract. A technique for the analysis of low–low
intersatellite range-rate data in a gravity mapping
mission is explored. The technique is based on standard
tracking data analysis for orbit determination but uses a
spherical coordinate representation of the 12 epoch state
parameters describing the baseline between the two
satellites. This representation of the state parameters is
exploited to allow the intersatellite range-rate analysis to
benefit from information provided by other tracking
data types without large simultaneous multiple-data-
type solutions. The technique appears especially valu-
able for estimating gravity from short arcs (e.g. less than
15 minutes) of data. Gravity recovery simulations which
use short arcs are compared with those using arcs a day
in length. For a high-inclination orbit, the short-arc
analysis recovers low-order gravity coefficients remark-
ably well, although higher-order terms, especially secto-
rial terms, are less accurate. Simulations suggest that
either long or short arcs of the Gravity Recovery and
Climate Experiment (GRACE) data are likely to
improve parts of the geopotential spectrum by orders
of magnitude.
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1 Introduction

For more than three decades the geodetic community
has realized that satellite-to-satellite tracking (SST)
provides extremely strong observational constraints for
determining the geopotential (see e.g. Wolff 1969;
Vonbun 1972). High–low satellite configurations have
proven valuable in the past (see e.g. Kahn et al. 1982),

and they continue to do so today (Lemoine et al. 1998b;
Schwintzer et al. 2000). Low–low satellite configurations
are expected to yield orders-of-magnitude improvements
in geopotential definition (National Research Council
1997), and such a system may finally come to fruition in
the near future with the Gravity Recovery and Climate
Experiment (GRACE) mission (Tapley and Reigber
2000).

Methods for deducing the geopotential from low–low
SST data have been developed by many groups over the
past two decades (see e.g. Douglas et al. 1980; Kaula
1983; Wagner 1983, 1987; Colombo 1984; Jekeli and
Upadhyay 1990). Many of these methods were based on
semi-analytic theories that made various simplifying
assumptions to overcome computational limitations.
For example, both Kaula’s and Colombo’s methods
assumed perfectly polar orbits – a ‘tail-biting orbit’ was
Colombo’s colorful phrase – which allow, among other
advantages, fast Fourier techniques. Computational
limitations are still an important consideration today,
but not nearly so much as when these earlier works were
written.

This paper explores a direct approach to estimating
gravity from SST data, relying more heavily on nu-
merical integration methods than on analytic or semi-
analytic methods. We present extensive simulations with
the following SST scenario: near-polar low–low satel-
lites, separated by a couple of hundred kilometers, each
satellite tracked continuously by global positioning
system (GPS) and each deployed with accelerometers to
correct for non-conservative forces. The fundamental
measurement is the satellite-to-satellite range rate,
measured with a precision of order 1 lm s�1.

In addition to establishing a viable technique for the
handling of SST data, this paper addresses two key
questions for any practical data analysis.

1. To what extent is the SST gravity inversion insensi-
tive to ephemeris accuracy? Specifically, is it suffi-
ciently insensitive that the orbit determination and
the gravity inversion can be performed in separate,
independent steps?Correspondence to: D. D. Rowlands
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2. To what extent is the SST gravity inversion depen-
dent on arc length? In particular, if the accelerome-
ters are incapable of removing all non-conservative
forces, including thrusting events, the satellite data
might necessarily be broken into very short arcs.
How will the gravity estimation be affected?

Concerning (1), our simulations described below show
that, indeed, the SST data can be handled (within
limitations) independently of the GPS data. We validate
a two-step method. The first step concentrates only on
achieving orbit accuracy (no gravity estimation). The
second step uses only the SST data to refine certain
components of the orbit while estimating gravity
coefficients. (This method is somewhat analogous to
what has been done to adjust tracking station coordi-
nates from satellite laser ranging data; Sinclair and
Appleby 1993.) A great advantage of this in our
application is that the orbit determination task in an
SST mission can concentrate on ephemeris accuracy,
using techniques such as empirical accelerations that are
normally prohibited in standard satellite gravity estima-
tion. A second practical advantage is, of course, that the
gravity inversion task can be performed without the
considerable simultaneous data processing chores asso-
ciated with GPS orbit determination.

The next section compares the role of arc length in
conventional orbit-determination-based gravity estima-
tion with the role it may play in a GRACE-like SST
mission. Section 3 describes a transformation that we
apply to the standard orbit parameters to enable our
decoupled analysis of the SST data. Section 4 gives the
rationale behind our data simulation procedures as well
as a detailed description of those procedures. Sections 5
and 6 present results of parameter estimations using
simulated data. Section 5 concentrates on the estimation
strategy for orbit parameters, while Sect. 6 presents the
results of gravity field recoveries with orbit parameters
adjusting simultaneously.

2 Arc length in gravity estimation

When satellite tracking data are analyzed for geophys-
ical parameter recovery, the analysis is often part of a
simultaneous solution for orbit parameters. In such
settings it is usually necessary to group the tracking data
into ‘arcs’ of data which span multiple revolutions of the
satellite. This is because most tracking data types do not
provide enough geometric strength to provide a unique
solution for the orbit until a substantial portion of the
trajectory is examined. Furthermore, force model pa-
rameters like gravity coefficients build up sensitivity with
arc length, because gravity signal is usually detected
through its effect on the trajectory of a satellite. If two
trajectories for a satellite are computed, each starting
from the same initial conditions but using different
gravity models, it usually takes some period of time
from the initial epoch before differences in the trajecto-
ries are large enough that differences in the gravity signal
can be inferred from tracking data. The trajectories are

used to compute ‘theoretical’ values of the tracking data
observations to which the actual observations are
compared. The difference in the trajectories due to
gravity needs to affect the computation of the theoretical
tracking data values above the level of the precision of
the actual tracking data. Furthermore, the differences in
trajectories computed with different gravity models are
often diminished because the initial state estimation
process at some level accommodates gravity errors.
Gravity is really an ‘indirect effect’ in conventional
tracking data analysis. Arc length is required for the
indirect effect to make its presence felt.

In general, long arcs are desirable. On the other hand,
as the arc length grows, so does the effect of unmodeled
forces. Therefore, the length of an arc in an orbit solu-
tion cannot be extended indefinitely without degrading
the solution. Choice of arc length is a key decision in the
analysis of tracking data. It depends on the geometric
strength of the tracking data, the magnitude of un-
modeled forces, and the sensitivity of the data to the
geophysical parameters of interest. Gravity models like
EGM96 (Lemoine et al. 1998a) have typically used
tracking data analyzed in arcs of data from 1 to 30 days.
With very few exceptions, the tracking data used in
EGM96 would not support the extraction of gravity
signal from an arc of data significantly shorter than a
day.

In a gravity mapping mission where there is very
precise tracking of the change in range between two
satellites in the same orbit plane, many of the conditions
that have always been a factor in deciding arc length for
solutions using conventional tracking data will be very
different. The most obvious difference is the high pre-
cision of the data. Small trajectory changes are detect-
able with more precise data. Furthermore, the
intersatellite observation is, in some sense, a direct
measurement of the difference in forces which the sat-
ellites experience at each instant, and hence almost a
direct measurement of gravity (Colombo 1984). The
extraction of gravity signal from such a measurement is
unlikely to require the type of trajectory analysis that
conventional tracking data requires. A precise range-
change measurement between two satellites in the same
orbit plane immediately senses the direct effect of gravity
as well as the more latent indirect effect (effect on
trajectory) that conventional tracking data rely upon
exclusively.

The orbit determination aspects of a gravity mapping
mission place different requirements on arc length as
well. Precise range change measurements between two
satellites do not provide sufficient information to de-
termine independently the orbits of the two satellites. As
will be demonstrated below, these measurements are
extremely sensitive to some components of the orbits of
the two satellites and almost completely insensitive to
others (relative to how well they can be determined from
other tracking data types). If the initial epoch state
vectors of the two satellites are determined with other
tracking data types, it should be possible to use the
range-change measurements by themselves to refine only
certain components of the orbits. This has the potential
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to allow shorter arcs. Orbit refinement does not place
the same constraints on arc length as orbit determina-
tion.

Even if the use of short arcs in a gravity mission is
possible, the question remains if their use is desirable. As
mentioned above, the effect of unmodeled forces places
an upper limit on the length of arcs. In a mission which
relies on high-precision tracking, the tolerance for un-
modeled forces is especially low. Accelerometry can re-
duce the level of unmodeled forces, but it remains to be
seen how well accelerometry will mix with very precise
tracking data. In other words, even with accelerometry,
the level of unmodeled or mismodeled surface forces
may be high compared with the level of gravity signal
that can be detected by precise intersatellite range-rate
measurements. If so, this may be a limiting constraint on
arc length. Also, small thrusting events may be inade-
quately sampled by accelerometers or there may be small
data gaps or noise. These situations are most straight-
forwardly handled by analyzing short arcs that avoid
periods of anomalous accelerations. Finally, it is possi-
ble that, for some applications, short arcs are desirable.
For example, short arcs may facilitate the independent
analysis of regional data in the form of gravity anomaly
blocks or some other local gravity parameterization. It is
beyond the scope of this investigation to answer many of
the questions surrounding the desirability of short-arc
analysis. We intend to demonstrate the possibility of
short-arc (under 15 minutes in length) analysis. We also
explore the tradeoff between using short arcs and arcs of
more conventional length (1 day), assuming that the
longer arcs are possible within the constraints presented
by a real gravity mapping mission.

3 A baseline representation for initial epoch
state parameters

Orbit solutions often solve for the six Cartesian
components of a satellite’s state vector at an initial
epoch. After each iteration of an orbit solution, the
updated initial Cartesian state vector is used to compute
the trajectory at later epochs, which is accomplished by
numerical integration of the Cartesian components of
the state vector. Even though the initial epoch state
vector is required in Cartesian form, it is sometimes
useful to solve for an alternative representation of the
initial state vector – for example, osculating Kepler
elements. Often it is easier to apply useful constraint
equations that are applicable to a particular data type
when a non-Cartesian representation is used. After the
alternative form of the state vector is updated, it is
transformed to Cartesian coordinates and the numerical
integration proceeds. It is straightforward to convert an
orbit solution from a Cartesian state vector solution to
some other representation. All that is required is the six-
by-six matrix of the partial derivatives of the six initial
Cartesian state vector parameters with respect to the six
alternative parameters.

In the case of the two satellites of a gravity SST
mission, the 12 parameters describing the two initial

Cartesian state vectors can be converted to the Cartesian
state vector of the baseline (the difference vector) be-
tween the two satellites and the Cartesian state vector of
the baseline midpoint (the average of the two satellite
state vectors). These two vectors can be further trans-
formed. In the case of the midpoint state vector, it is
useful to convert the three position components to
spherical coordinates: the declination of the midpoint,
the right ascension of the midpoint, and the distance
between the midpoint and the Earth’s center of mass.
For the baseline vector, it is useful to imagine a local
Cartesian coordinate system centered at the midpoint of
the baseline. The XY plane of the system is perpendicular
to the position vector of the system midpoint. The X axis
is the local east vector of the local coordinate system. It
is further useful to describe both the position and ve-
locity (rate of change) components of the baseline state
vector in spherical coordinates which are based in this
local coordinate system. In each case, the vector is
converted to magnitude, pitch (angle the vector makes
with XY plane) and yaw (angle that the projection onto
the XY plane makes with the X axis). The 12 new epoch
state parameters are:

P1 distance of baseline midpoint from the Earth’s
center of mass

P2 declination of baseline midpoint
P3 right ascension of baseline midpoint
P4 inertial X component of baseline midpoint velocity

vector
P5 inertial Y component of baseline midpoint velocity

vector
P6 inertial Z component of baseline midpoint velocity

vector
P7 baseline vector length
P8 baseline vector pitch
P9 baseline vector yaw
P10 baseline rate-of-change vector magnitude
P11 baseline rate-of-change vector pitch
P12 baseline rate-of-change vector yaw.

We have implemented the ability to solve for the above
12 parameters in our orbit determination and geodetic
parameter estimation software, GEODYN (Pavlis et al.
2001). This required only a new subroutine which
transforms back and forth between a pair of Cartesian
state vectors and the above 12 parameters and which
also computes the 12 by 12 matrix of the partial
derivatives of the 12 initial Cartesian state parameters
with respect to the 12 spherical coordinate parameters.

In the following sections we demonstrate that the
above 12 parameters are promising for use in the anal-
ysis of the intersatellite range-change measurements
when they are decoupled from other tracking data types
that might be available. We can reasonably expect that
the intersatellite range-change measurement is more
sensitive to the baseline parameters than to the midpoint
parameters. We also expect that the intersatellite range-
change measurement is fairly insensitive to the baseline
yaw parameters. If the range-change measurements are
to be analyzed independently from other tracking data
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types (in the second step of our two-step method), then
it is important to study the sensitivity of the range-
change measurement to each of the above 12 parame-
ters. The sensitivity of the measurement to each of the 12
parameters should be compared with how well each
parameter is likely to be determined independently from
other tracking data types available in the mission (in the
first step of our two-step method). That subject is ex-
plored in Sect. 5 and in the Appendix.

4 Data simulation and assumptions for data reduction

This section is devoted to an explanation of the
techniques and assumptions involved in simulating the
data used in our study. Although the analysis of the data
is explained in Sects. 5 and 6, it is useful to lay out the
goals of the data analysis before proceeding with a
description of the data simulation. The analysis is
intended to reveal the extent to which gravity recovery
can be achieved from short-arc solutions. This we intend
to do in a relative sense by comparing the results
obtained from short arcs to the results obtained from
arcs of more traditional length. Of course, the results in
each case use simulated data and are likely to be
optimistic. It is the differences in results which are most
instructive. We perform the short-arc analysis and long-
arc analysis under nearly identical circumstances. While
the ‘burden of proof’ falls upon the less traditional short-
arc analysis, we have tried to ensure that simplifying
assumptions used in the data simulation procedure will
have equal effect on both analyses. In any case, we do not
want an assumption to favor the short-arc analysis.

Accelerometry is one example where simplifying as-
sumptions were made. For the long-arc analysis we as-
sumed that there are no problem epochs associated with
the accelerometry (gaps or inadequately sampled
thrusts). As will be described further below, in the short-
arc analysis we assumed that problem epochs occur
fairly frequently. Obviously, this favors the long-arc
analysis. We also assumed that the accelerometry is er-
ror free (other than at problem epochs for short arcs).
Although this assumption makes both analyses opti-
mistic, it favors the long-arc analysis. In practice, short
arcs are less affected by accelerometry errors because
there is less time for the errors to grow as they are in-
tegrated in the satellite force model. Problems associated
with errors in surface forces (whether they come from
surface force models or from accelerometry) have tra-
ditionally been a limiting constraint on arc length. An
error-free accelerometry assumption favors the long-arc
solution.

All of the studies in this paper are based on using
simulated one-way intersatellite range-rate data with a
Doppler counting interval of 1 s. The data were gener-
ated using the orbits of two co-orbiting satellites with
characteristics shown in Table 1. The key points are that
the satellites are at an altitude very close to 500 km,
have a very low eccentricity, are very nearly polar, and
are separated by about 200 km. The second satellite’s
initial elements are an exact copy of the first satellite’s

initial elements 30 seconds later. This was done only as a
matter of convenience in the data simulation step, and
was no way exploited in the data analysis step. Fur-
thermore, the orbits of the two satellites evolve a bit
differently, because (as described below) thrusting events
were assigned to each satellite at different epoches in the
simulation step.

The satellite orbits were generated with the EGM96
gravity field using all terms up to degree 120. Drag and
solar radiation were not modeled in our simulations; it is
assumed that accelerometry will sufficiently account for
these forces. Accelerometry should also compensate for
small thrusting events, but it is possible that thrusting
can cause occasional problems, so our simulations do
include thrusting. Each satellite was given a thrust every
30 minutes (a DV of about 0.5 mm s�1), but in a stag-
gered manner so that the satellite–satellite system re-
ceived a DV every 15 minutes. [This, in fact, is roughly
comparable to the thrusting frequency currently occur-
ring on the CHAMP satellite (Schwintzer et al. 2000).]
Although it would be hoped that an accelerometer
would accurately model thrusts, we wish to determine if
problematic thrusts can be removed from the analysis
process altogether (assuming they occur no more fre-
quently than every 15 minutes). We therefore investigate
whether gravity signal can be recovered while analyzing
range-rate data in arcs of slightly less than 15 minutes
(between thrusts). Orbits are refined every 15 minutes
using arcs that begin 40 s after a thrust and 20 s before a
thrust (14-minute arcs).

A data point was created every 5 s for 30 days (the
counting interval remaining at 1 s). Two versions of the
data were created, one with no noise and the other with
noise of 1 lm s�1. The noiseless version was useful in
the verification of the modifications made to the GEO-
DYN software for the new epoch state parameteriza-
tion. The noiseless version was also used in preliminary
studies to determine range-rate data sensitivity to epoch
state parameters in orbit refinement solutions. The lack
of noise makes residual analysis easier. All gravity re-
covery simulations used the data with noise.

Most of the studies in this paper involve reducing the
simulated data using an a priori gravity field which is
different from EGM96. A crucial question is to determine
whether the intersatellite range-rate data can be used by
themselves (after orbits have been precomputed with a
variety of tracking types and then refined in certain
components with the intersatellite measurements) to re-
cover the coefficients of EGM96, starting from a different
gravity field. The a priori gravity field is a ‘clone’ of

Table 1. Initial Keplerian elements for both satellitesa

Semi-major axis a 6 878 050 m
Eccentricity e 0.001
Inclination i 89.1�
Node X 0�
Perigee argument - 0�
Mean anomaly m 0�
Period T 94.6 min

a Initial epoch satellite 2 = initial epoch satellite 1 + 30 s
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EGM96 through degree 70 and is zero above that. (By
clone field, we mean a field that differs from the original
by about the amount the original field differs from reality.
Clones are often used in sensitivity studies like ours.) At
degree 70 and below, the coefficients of the a priori clone
field differ from EGM96 by about the standard errors
of EGM96. While considerable evidence suggests that the
EGM96 errors are realistic (Lemoine et al. 1998a), the
EGM96 model itself does differ from some other recent
models by amounts exceeding these errors. Our a priori
clone gravity model should therefore be considered as
fairly ‘close’ to EGM96, so if we are able to recover a field
that is closer to EGM96 than the clone, then we will have
shown that our technique is useful for recovery of small
gravity signal below degree 70. Basing the test on an a
priori field that is already close to EGM96 is a stringent
test of sensitivity. Above degree 70, our test will be less
severe since we are starting from zero (which is farther
away from EGM96 than the standard errors). Even so,
we will be able to determine if signal above degree 70 can
be recovered with our method of reduction.

The clone field was also used to generate the starting
trajectory that is used to obtain the a priori elements to
begin the orbit refinement process (the second step of
our two-step process, which also includes gravity esti-
mation). The intersatellite range-rate data are used in
this refinement step to adjust only three or four of the 12
initial state parameters (as discussed below). In the
second step we accept the other eight or nine initial el-
ements from the starting trajectory without alteration.
So, some information from the starting trajectory (in-
cluding errors) will be present in the final orbits that are
used to extract the gravity signal. In the next section it
will be shown that the intersatellite measurement is
sensitive to some orbit components and insensitive to
others. It is important that our study uses a starting
trajectory that has been produced in a realistic manner
so that it contains a realistic distribution of errors across
all the orbit components.

Starting trajectories will almost certainly be produced
with reduced dynamic techniques (see e.g. Bertiger et al.
1994; Rowlands et al. 1997). This involves the exploi-
tation of dense tracking and aggressive empirical pa-
rameterizations to compensate for the fact that the
gravity model and other aspects of the force model have
errors. The empirical parameters are usually used in the
form of acceleration coefficients that are valid over a
specified period of time. Typically, empirical accelera-
tion coefficients are used in the along- and cross-track
directions. Every time the force model is evaluated
during the time period of its validity, these extra accel-
erations are applied in the specified direction(s).
Colombo (1989) demonstrates that empirical accelera-
tion parameters are especially useful when of the form

A cosðx þMÞ þ B sinðx þMÞ

where x is the argument of perigee and M is the mean
anomaly. The sum of these angles cycles through 360�

each revolution, hence the name ‘once-per-rev’ empirical
acceleration.

The solution for the starting trajectories had the
following characteristics.

1. The clone gravity field was used.
2. DV s were solved for at the appropriate times.
3. Empirical, periodic once-per-revolution accelerations

(A and B parameters) were solved for in both the
along- and cross-track components. These parame-
ters were estimated every 30 minutes.

4. The simulated intersatellite range-rate measurements
were used as a tracking data type.

5. To simulate the strong geometrical constraints
that GPS tracking would provide, the ‘truth’
ephemeris was used as a tracking data type in the
position components only (velocity information
not used).

6. Solutions used 30 h of data, from 0000 hours of one
day to 0600 hours of the next.

The starting ephemeris produced from the above
solution differs from the ‘truth position’ in a root-
mean-square (RMS) sense by 3 cm (total position). That
is probably optimistic for what will be attainable for the
position components of a pair of satellites at 500 km
altitude. This level of position accuracy was achieved in
part because the position components of the truth
ephemeris were used as a data type as a convenient
substitute for GPS data. As Jekeli (1999) makes clear,
the velocity components of the orbit are probably more
important for our study. The above solution did not use
the velocity components of the truth trajectory as a data
type. The velocity components of our solution are
evidently resolved on the strength of the intersatellite
range-rate data. Those data were given a realistic
treatment. The orbit solution for our starting ephemeris
fits the intersatellite data at 12 lm s�1 (12 times the
noise level) over a 30-h arc.

When judging whether our starting ephemeris is
realistic, it is tempting to compare our results to the
orbit solution performance currently being achieved
for the CHAMP satellite (Reigber et al. 2000), which
currently is roughly 10 cm. CHAMP is also in a polar
orbit, but it is about 60 km lower than the satellites in
our simulation. More importantly, CHAMP does not
benefit from a precise intersatellite range-rate mea-
surement. The intersatellite range-rate measurement
contributes to the resolution of the many empirical
acceleration parameters used in our reduced dynamic
approach. A gravity mapping mission with a precise
intersatellite range-rate measurement would have bet-
ter orbit solution performance than a single satellite
mission like CHAMP. In any case, in the Appendix
we demonstrate that the use of a somewhat degraded
version of our starting ephemeris has very little effect
on gravity recovery.

5 Orbit refinement

Before attempting any large simulations to demonstrate
the ability of our technique to recover gravity informa-
tion, we performed some smaller simulations with the
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goal of understanding orbit refinement from intersatel-
lite measurements. In particular, we wished to determine
which parameters need be refined and which parameters
can be taken from the reduced dynamic trajectory
without alteration.

Our first set of tests used the truth force model
(EGM96 up to degree 120) and the noiseless intersatel-
lite range-rate data. These tests were performed on short
arcs (14 minutes) between the DV thrusting events de-
scribed in the previous section. The goal of these tests
was to find the best minimum set of initial state pa-
rameters to estimate so that the a posteriori range-rate
residuals are well below the 1 lm s�1 level. If all of the
elements are set to truth values, then the noiseless data
fit perfectly when EGM96 is used. The unrefined initial
elements are only close to the truth values and produce
residuals of 200 lm s�1 even if the EGM96 gravity
model is used. Although the data used in these tests were
noiseless, they were weighted in the least-squares (LS)
solution as if they had a standard deviation of 1 lm per
second. This is noted so that the formal standard devi-
ations of the adjusted parameters can be interpreted.

The first runs adjusted a single parameter. As noted
above, the starting elements without refinement produce
residuals with an RMS of about 200 lm s�1. When only
a single parameter is adjusted, the only parameter that
could reduce the RMS residual to under 100 lm s�1 is
the baseline rate-of-change pitch parameter P11. In fact,
the P11 adjustment produced an RMS residual of under
10 lm s�1.

The second set of runs adjusted two parameters, with
P11 always being one of the pair. While examining the
choice of a second parameter it became clear that, over
short arcs, two parameters are highly correlated: P10

(baseline rate-of-change magnitude) and P1 (the distance
of the baseline midpoint from the center of mass of the
earth). The choice of either of these parameters as the
second parameter to accompany P11 produces almost
identical residual patterns. When these two parameters
(P10 and P1) are allowed to adjust simultaneously along
with P11, the inverted normal matrix shows a correlation
between P1 and P10 of very nearly one. When either of
these two parameters accompanies P11, the solution
produces an RMS residual of less than 1 lm s�1. We
chose to use rate-of-change magnitude (P10) because the
adjustments in this component were always less than
100 lm s�1 and usually less than 20 lm s�1. This seems
more reasonable than the adjustments in the P1 param-
eter (sometimes more than 30 cm), since our reduced
dynamic trajectories were better than 10 cm radially. In
general the P1 parameter should almost always be de-
termined from a reduced dynamic trajectory to better
than 10 cm, so over short arcs this parameter is not
likely to need adjustment.

Even though the adjustment of P10 and P11 brings the
RMS residuals to under a 1 lm per second, there were
noticeable trends in the residuals, sometimes near the
micron-per-second level. Because of this we made one
more set of runs to search for a third parameter. We find
that baseline pitch P8 works best. With P8; P10, and P11

adjusting, the RMS residuals were well under

0.1 lm s�1. Therefore, in our short-arc gravity recovery
experiments (next section) we adjusted these three pa-
rameters. It may be possible to avoid adjusting baseline
pitch, especially if arcs of 10 minutes or less are at-
tempted.

Our final set of runs deal with longer arcs. In the next
section we describe two gravity field determinations.
One determination uses 30 days of 14-minute arcs (2878
arcs). The other uses 30 arcs, each 1 day in length. We
want to find the proper set of adjusting parameters for 1-
day arcs. In extending to 2-h arcs we found that our ‘14
minute parameterization’ (P8; P10; P11 adjusting) holds up
quite well, producing fits of less than 0.2 lm s�1. We
also found that for arc lengths of 2 h, the P1 parameter is
still highly correlated with P10. At an arc length of 12 h
the ‘14-minute parameterization’ produces RMS resid-
uals of close to 1 lm s�1. Also, at this arc length, the P1

parameter is less correlated (still 0.999) with P10. At 12 h
and above, four parameters (including P1) can be sen-
sibly adjusted. In these adjustments the formal standard
deviation of P1 is less than 1 cm. When P1 is adjusted as
the fourth parameter in a 12-h arc, the RMS residual is
reduced to below 0.1 lm s�1. In a 24-h arc, the corre-
lation between P1 and P10 is reduced to 0.995. Our ‘long
arc’ gravity analysis described in the next section si-
multaneously adjusts four arc parameters along with
gravity coefficients.

As noted above, the noiseless version of the data was
used in these orbit refinement studies and the force
model was set to ‘truth’ values. So, if enough initial state
parameters are allowed to adjust, the data will be fitted
perfectly. The gravity analysis described in the next
section uses the initial state parameterizations that have
just been described, but the clone gravity field is used to
compute the trajectories (refine the trajectories before
normal equations are generated) and the ‘noise-added’
version of the data is used. In this mode, when the three
short-arc parameters are allowed to adjust, the arcs fit
the data between 7 and 25 lm s�1. The day-long arcs,
with four parameters adjusting, have fits between 20 and
60 lm s�1.

6 Gravity solutions

The gravity solutions presented in this section are, like
most simulations, somewhat optimistic. The simulations
include no unmodeled effects other than random
measurement noise and some initial satellite state error
(which is left over from those initial satellite state
elements that we leave unaltered from the reduced
dynamic trajectory). In the long-arc analysis we modeled
(without adjustment) the ‘truth’ values of the DV thrust
events, which implies perfectly performing accelerome-
ters. Futhermore, in addition to some initial satellite
state refinement, only gravity parameters are estimated
from the simulated data; no attempt is made to estimate,
for example, tidal and gravity parameters simultaneous-
ly. In fact, tides and other high-frequency atmospheric
and oceanic mass motions pose serious aliasing prob-
lems for an SST mission because of the difficulty in
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modeling and removing the associated gravity effects at
required accuracies (Zlotnicki et al. 2000; Verhagen
et al. 2000). Such problems are here ignored.

The two solutions presented below, one comprising
short arcs and the other comprising long arcs, are in-
tended to be taken qualitatively. The differences between
the short-arc solution and the long-arc solution are of
particular interest, since they reveal how much infor-
mation is potentially lost when short arcs are used and
what can be gained by extending arc length (assuming
the level of unmodeled forces does not preclude the use
of long arcs). However, the fact that it is possible to
obtain sensible gravity solutions from arcs shorter than
15 minutes is significant in itself.

We estimated two gravity fields using the 30 days of
simulated data described in Sect. 4. Each gravity field
was estimated to degree 120 without any constraints.
The method used in estimating the fields differed in the
choice of arc length. The ‘short-arc’ field used 2878 arcs
14 minutes in length, while the ‘long-arc’ field consisted
of 30 arcs, each 1 day in length. The short-arc field es-
timated 2878 � 3 = 8634 arc (orbit) parameters simul-
taneously with the 14 337 gravity coefficients, while the
long-arc field estimated 30 � 4 ¼ 120 arc parameters.
The short-arc field discarded 1 minute of data around
each DV (12 points) every 15 minutes, so the short-arc
field uses approximately 7% fewer observations.

The estimated gravity fields should be compared with
EGM96, which was used to simulate the data and is
therefore the ‘true’ field, and the EGM96 clone, which
was used as the a priori field from which gravity normal
equations and initial ephemerides were produced. The
figures in this section which pertain to coefficient values
show differences from EGM96. If our estimates were
perfect, the estimated coefficient differences from
EGM96 would be zero. Of course the differences are not
zero, but they are much smaller than the differences
between EGM96 and the EGM96 clone (see Fig. 2).

The formal errors of our estimated coefficients cannot
be directly compared to EGM96 errors. The standard
errors of EGM96 are the result of a complex calibration
of weights of the many data types used in its solution
(Lerch 1991). The formal errors of our two estimated
fields are simply the diagonals of an inverted normal
matrix having a single data type which had been as-
signed a standard deviation of 1 lm s�1. The formal
errors of our estimated gravity coefficients should
therefore be interpreted only in a relative sense. Inter-
nally, they should be reliable for seeing which portions
of the estimated gravity fields are more strongly or
weakly determined. Externally, they should provide a
good basis to compare two gravity fields that were es-
timated in a largely similar fashion.

Figure 1 shows the RMS differences of the prior field
and the two estimated fields with respect to the ‘true’
EGM96. It shows immediately (and reassuringly) that
both estimated fields are considerable improvements
over the a priori field. Neither field appears to be im-
pacted by the truncation of the prior field at degree 70;
both show relatively smooth differences with respect to
EGM96 through all degrees. More interestingly, Fig. 1

emphasizes that an accurate gravity field can be esti-
mated from short arcs. The short-arc gravity field is
significantly better than the a priori field at every degree
from degree 5 up to degree 100. It is not surprising that a
field that is sewn together only from sub-orbital arcs is
weaker at the very lowest degrees. The comparison of
the performance (by degree) of the short-arc field with
that of the long-arc field is not unfavorable to the short-
arc field from degree 30 upwards. However, at about
degree 100, the short-arc field stops out performing the
clone gravity field. This does not happen until about
degree 110 for the long-arc field. When judging the rel-
ative performance of the two estimated fields, it should
be remembered that our simulations assume that the
accelerometer is working perfectly (no unmodeled forc-
es), which is much more beneficial to the outcome of the
long-arc field than the short-arc field.

More detailed comparisons of the three fields are
shown in Fig. 2, while the estimated formal errors are
shown in Fig. 3. Over a wide range of degrees and or-
ders, both estimated fields show remarkable improve-
ments relative to the EGM96 clone. Many coefficients
are improved by two orders of magnitude. This is gen-
erally consistent with figures quoted in the 1997 Na-
tional Research Council report (see National Research
Council 1997, Fig. 2.6), but it is more definitive since the
National Research Council calculations were based on
an analytic theory of Jekeli and Rapp (1980) which as-
sumes isotropic data (including data at all inclinations)
and ignores possible required arc parameters.

In general, Figs. 2 and 3 agree well and show where
the solutions are strong and where they are weakened
when arcs are shortened. For a given degree, both the
short-arc and long-arc fields determine lower-order co-
efficients more accurately than higher-order coefficients.
That trend is much more pronounced in the short-arc
field, especially for sectorials, which for some low de-
grees are actually slightly inferior to the clone field.
Again, this is not surprising – we cannot expect an
extremely short arc (roughly 1/6 of a revolution) in a

Fig. 1. RMS gravity coefficient differences with respect to a ‘true’
gravity field of the a priori field (solid line), a solution employing short
arcs (dashed line), and a solution employing long arcs (dotted line).
The discontinuity in the a priori model arises because it is truncated to
zero above degree 70. The insert is a zoom view of the low degrees
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high-inclination orbit to be sensitive to long-wavelength
sectorial terms.

Most remarkably, the long-arc and short-arc fields
are very comparable at low orders, especially so for
zonal coefficients. The RMS discrepancy over all degrees
(2 to 120) between EGM96 and the short-arc field for

zonal coefficients is 1:9 � 10�10. For the long-arc field
that discrepancy is 1:8 � 10�10. Figure 4 shows that this
striking similarity holds for all zonal terms, save the few
between degrees 2 and about 8. For degrees 10 to 40
both long-arc and short-arc zonals are two orders of
magnitude (or more) more accurate than the clone
model. They are nearly one order of magnitude more
accurate at degrees 40 to about 100. The improvement
ceases at degree 112. Determining zonal gravity coeffi-
cients has historically been problematic in satellite
geodesy. Clearly, an SST mission – even one which for
one reason or another is restricted to using very short
arcs of data – is likely to yield significant advances.

7 Summary

We have demonstrated a promising technique for the
analysis of low–low intersatellite range-rate data from a
gravity mapping mission. The technique largely (but not

Fig. 2. Results of gravity inversion simulations showing
log

pðDC2
nm þ DS2

nmÞ, for fully normalized Stokes coefficients
Cnm; Snm differenced with the ‘true’ gravity field, for a the a priori
gravity field, b the short-arc gravity inversion, and c the long-arc
gravity inversion. The discontinuity in the a priori model arises
because it is truncated to zero above degree 70. Below degree 70 a is
indicative of present-day uncertainties in the geopotential, as
represented by the standard errors of EGM96

Fig. 3. Formal errors for gravity simulations employing a short arcs
and b long arcs. Colors show the logarithm of errors for fully
normalized coefficients
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completely) decouples the task of orbit determination
from the task of extracting gravity information. This has
several advantages.

1. In the first step of the procedure orbits can be deter-
mined using all available tracking types and reduced
dynamic techniques. Extraction of gravity informa-
tion in the second step benefits from the use of
empirical accelerations used in the first step without
aliasing problems.

2. In the second step of the procedure, only intersatellite
data are used. Gravity information can be extracted
without complex solutions involving multiple data
types.

3. Because orbits are only refined (not fully determined)
in the second step, short-arc analysis is facilitated.

The technique transforms the standard 12 initial epoch
state vector parameters of the two satellites into
spherical coordinates describing the baseline between
the two satellites. We have performed an analysis to
show which of these 12 parameters need to be estimated
simultaneously with gravity coefficients.

We have used this technique to estimate gravity fields
from simulated data. Our study neglects many effects,
but unlike some simulation studies of gravity missions in
the literature, we consider the need to estimate orbit
parameters simultaneously with gravity coefficients. We
have investigated the possibility of estimating a gravity
field entirely from short arcs (14 minutes) of intersatel-
lite range rate data and found that this should indeed be
possible. We have also shown the differences between a
short-arc gravity field and a field estimated from long
arcs. The use of long arcs (if possible) adds information
primarily at the higher orders of every degree of the
gravity field.
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Appendix

In Sect. 5 we discussed an orbit refinement stratgey
which (depending on arc length) refines only three or
four orbit parameters. The second step of our gravity
estimation method accommodates orbit error in the
components corresponding to P8; P10, and P11 (and also
P1 in long arcs). The tests in Sect. 5 demonstrated that
(at least in a relative sense) it is not as important to
consider errors arising from the other eight or nine state
parameters. Our two-step method requires that the first
step produces an input trajectory which is accurate
enough that the second step can ignore these eight or
nine parameters altogether. As seen in Sect. 6, the input
trajectory used in our study was sufficiently accurate. To
conclude that discussion, we here demonstrate that the
high accuracy of the input trajectory used in this study
does not cause overly optimistic results.

The partial derivatives of the intersatellite measure-
ment with respect to state parameters were examined for
a sample of arcs. This examination was restricted to the
nine unrefined parameters. Of these nine, four can be
excluded based on the size of the maximum partial de-
rivative found. According to the partial derivatives, any
one of these four parameters could contain an error
corresponding to 10 cm and the resulting range-rate
signal would never reach 1 lm s�1 for any observation
over a 15-minute arc. These parameters are P2; P3 (the
declination and right ascension of the baseline mid-
point), P9, and P12 (the baseline yaw parameters), and it
is intuitive that the range-rate observation would be
insensitive to them. Parameters P4; P5, and P6 (corre-
sponding to the velocity vector of the system midpoint)
can be taken as a group. When the measurement partials
of these parameters are taken as a triple to form a vector
at any epoch of the arc, they are linearly dependent with
the initial velocity vector of the arc. This implies that an
error in any one component is unimportant, and that
only an error in the magnitude of the system midpoint
velocity vector is possibly important. It takes an error of
about 25 lm s�1 in the initial velocity vector of the
system midpoint to affect any range-rate observation
over a 15-minute arc at the 1 lm s�1 level. According to
Kepler’s third law, for a satellite at an altitude of
500 km, an error of 25 lm s�1 in the initial velocity
vector is equivalent to about 5 cm radial error. Radial
errors of 5 cm should be attainable. Furthermore, as
shown below, the adjusting elements (P8; P10; P11) can
accommodate radial error.

There are only two parameters, P1 (the system
midpoint height) and P7 (baseline length), that cannot be
excluded from causing problems by the examination of
measurement partial derivatives. Extra orbit tests were
performed for these two parameters. The input trajec-
tory was altered systematically in these components.
The first 41 short arcs were re-run with altered input

Fig. 4. Differences with respect to a ‘true’ gravity field of zonal
coefficients Jn of degree n, for the a priori field (solid line), the short-
arc gravity solution (dashed line), and the long-arc gravity solution
(dotted line). All three lines have been smoothed to remove minor
statistical variability (which smears out discontinuity in solid line at
degree 70). The long-arc and short-arc solutions are similar, except for
the lowest degrees where the short-arc solution is less accurate
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trajectories. Four additional sets of runs were made for
these 41 arcs. The first two sets of runs were made with
the ‘truth’ (EGM96) gravity field. In the first set of runs,
the input trajectory was altered so that the midpoint
height value was 5 cm smaller than on the original input
trajectory. In the second set of runs, the trajectory which
had already been altered radially was further altered to
make the baseline longer by 10 cm. The fits in these runs
were unaltered by the use of the modified trajectories.
The maximum residual was 0.12 lm s�1. It should be
noted that the alterations of the input trajectory did
cause a slight change in the values of the adjusted
parameters, especially P10 (baseline velocity magnitude).
The same two modified input trajectories were used for
the final two sets of runs. These two sets of runs use the
clone gravity field and, as in the corresponding set of
runs which use the original input trajectory, the residu-
als in these runs (7–25 lm s�1 RMS) are the result of
gravity errors. The residual pattern is what determines
the adjustment of the gravity coefficients, and our
objective was to determine if the use of the modified input
trajectories affected the residual pattern. Each of the 6929
observation residuals in these final two sets was differ-
enced with the corresponding residual in the original set
of runs (the set using the original input trajectory). The
maximum residual difference was 0.11 lm s�1.
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